Q.P. Code: 18HS0836

R18

- 6 a Out of 80 students in a class, 60 play foot ball, 53 play hockey and 35 both the games. 5M How many students (i) do not play of these games? (ii) Play only hockey but not foot ball.
 - b Find how many integers between 1 and 60 that are divisible by 2 nor by 3 and nor by 5M
 5. Also, determine the number of integers divisible by 5 not by 2, not by 3.

Q.P. Code: 18HS0836

OR

R18

5M

5M

- 7 a In how many ways can the letters of the word COMPUTER be arranged? How many 5M of them begin with C and end with R? how many of them do not begin with C but end with R?
 - b Find the minimum number of students in a class to be sure that 4 out of them are born **5M** on the same month?

UNIT-IV

- 8 a Solve the recurrence relation $a_{n+2} 2a_{n+1} + a_n = 2^n$ with the initial conditions 5MI $a_0 = 2, a_1 = 1.$
 - **b** Solve the equation $a_n 7a_{n-1} + 10a_{n-2} = (4)^n$.

- 9 a Use generating functions to solve $a_n 5a_{n-1} + 6a_{n-2} = 2^n$ for n > 2 with the initial 5M conditions $a_0 = 1, a_1 = 1$.
 - **b** Solve $a_n = a_{n-1} + 2a_{n-2}$, n > 2 with the initial conditions $a_0 = 2$, $a_1 = 1$. 5M

UNIT-V

- **10** a A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 5M 3.Find the number of vertices in G?
 - **b** What is the maximum possible number of edges in a simple graph G with n-vertices **5M** and hence prove it?

OR

- **11** a Find the chromatic polynomial & chromatic number for $K_{3,3}$.
 - **b** Define graph isomorphism. Is the following pair of graphs are isomorphic to each **5M** other?

END